THE ASSESSMENT OF ROSE ESSENCE (ROSA DAMASCENA) IN TREATING INTRACTABLE PHARMACORESISTANT EPILEPSY IN CHILDREN BETWEEN 3-12 YEARS

Alireza Ataei Nakhaei1, Seyyedeh Fereshteh Mirhaghjoo2, Nooshin Abdollahpour3, Saeideh Anvari Ardakani4, Farah Ashraf Zadeh5*

1Department of Pediatric, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
2Msc Medical Biotechnology, Department of Biotechnology, Bangalore University, India.
3Msc Biophysics, Department of Biology, Faculty of Sciences, Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
4Department of Neurology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
5Pediatric Neurologist, Professor of Pediatrics, Mashhad university of Medical Sciences, Mashhad, Iran.

ABSTRACT
Objectives: Epilepsy is a major neurological disorder among children. Rosa damascena is proven to have hypnotic, antispasmodic and relaxant properties. This study aimed to evaluate the effects of R. damascena essence on controlling intractable pharmacoresistant epilepsy in children between 3-12 years old admitted at the department of neurology of Ghaem Hospital.

Methods: Simple random sampling was used in this study. Medical therapy was conducted in three stages. Initially, 500 cc of R. damascena essence was prepared and a concentration of 10% was obtained with medium-chain triglyceride (MCT). Afterwards, medical and placebo interventions were performed based on patients’ referral prescription using a double-blinded approach.

Results: In total, we studied 16 patients including 9 male (56.3%) and 7(43.8%) female subjects. There was a statistically significant difference between the frequency of seizures before and after the treatment with Rose oil (P=0.000). The seizures were suppressed in 3 cases (18.7%) and they completely receded in 12 patients (75%). Only in one case (6.25%), no significant differences were observed. Conclusion: Rosa damascena oil could significantly decrease the frequency of epileptic seizures. However, it may not affect the duration of the fits. Moreover, no side effects or complications have been associated with R. damascena as the adjuvant therapy for epileptic pharmacoresistant children.

KEYWORDS
Epilepsy, Pharmacoresistant and Rosa damascena.

INTRODUCTION
Epilepsy is one of the most prevalent neurological conditions in which no such factors as age, racial status, social class, geographic situation or national boundaries are involved. It affects 50 million people worldwide 80% of which live in the developing countries. An epileptic individual
suffers recurrent seizures provoked by acute brain insults or metabolic derangements2,3.

Epilepsy is a common childhood condition associated with a considerable medical and psychosocial burden. Children in whom medical treatment fails to reduce the fits represent a particularly vulnerable population since prolonged, uncontrolled seizures are associated with poor developmental and neurocognitive outcomes4-6. Epilepsy is believed to be one of the most frequent neurological disorders in children with an approximate incidence of 45 per 100,000 per year7-9. Approximately 20\% of epileptic children are known to be pharmacoresistant. The impact of intractable epilepsy extends far beyond seizures only to result in intellectual disability, psychiatric co-morbidity, physical injury, unexpected death during the fits and poor quality of life10.

Various predictors for pharmacoresistance in epilepsy have been identified. However, the accurate prediction of the seizures is still a challenge for medical experts. Population-based epidemiological studies indicate that in children, pharmacoresistance tends to develop relatively early in the course of the disease. Nonetheless, approximately one third of the children who initially appear to be pharmacoresistant in the first few years after the onset of epilepsy will ultimately achieve seizure free without surgery11,12.

First-line therapy for pediatric epilepsy consists of antiepileptic drugs (AEDs). Even so, the probability of seizure control diminishes with the increasing number of ineffective medications. In a prospective study of children with new-onset seizures, the first AED failed due to lack of efficacy in 25\% of the patients13 while 51\% of these children showed a favorable response to the second agent of the drug. However, the chance of achieving remission of \textgreater1 year with subsequent regimens was only 29\% after two AEDs had failed and 10\% after three AEDs had failed14.

In general, pharmacoresistance is defined as the failure of epileptic seizures to come under complete or acceptable control in response to AED therapy. Unfortunately, current AEDs may not prevent or reverse drug resistance in most patients while add-on therapy with novel AEDs might lead to a modest seizure reduction in up to 50\% of the patients in short-term clinical trials, and a few might even become seizure free after the trial15.

For children with pharmacoresistant epilepsy, there are other therapeutic options which could be largely effective at times. In cases with identified, surgically remediable epilepsy, resection is regarded as a viable option with up to 60-70\% chance of seizure free. In addition, dietary therapy with the ketogenic diet might result in seizure free in 10-15\% and worthwhile seizure reduction in more than half of the cases16.

Approximately one third of the people with epilepsy (PWE) are known to have drug-resistant seizures17,18. Therefore, surgery is considered highly effective, as well as safe, for selected patients with treatment-resistant focal epilepsy. Nevertheless, surgery is still underused, even in high-income countries. Other treatment strategies are primarily palliative (e.g vagus nerve stimulation) or still under investigation (e.g closed-loop cortical stimulation)19.

Although newer AEDs may offer an improved adverse-event profile in comparison to older-generation AEDs, they might still lead to significant central nervous system (CNS) defects such as decreased cognitive abilities and psychiatric complications. Evidently, more efficacious and better-tolerated treatments are to be modified for epilepsy. In this regard, complementary and alternative medication (CAM) has a long history of use in different parts of the world. Moreover, there has been a growing interest towards this approach in modern countries over the past decades7.

In countries with a modern medical system, PWE tend to consume natural products or engage in other forms of CAM mainly to enhance general health as well as to prevent seizures and/or alleviate the symptoms of co-morbidities or side effects caused by antiepileptic medications20. Rosa damascena is a rose species which is famous for its desirable scent. Several studies have investigated its hypnotic, antispasmodic and relaxant properties as well as its
therapeutic effects on abdominal and chest pain and
cardiac strengthening21,23.

With respect to the importance of pediatric epilepsy
and lack of adequate studies in this regard, we
aimed to evaluate the effects of Rose (Rosa
damascena) essence on controlling intractable
epilepsy in pharmaco-resistant children ageing from
3 to 12 years old who were admitted at the
Department of Neurology of Ghaem Hospital in
Mashhad, Iran.

MATERIALS AND METHODS

This was a cross-sectional, analytic and double-
blinded study which was conducted at the
Neurology Department of Ghaem Hospital. The
inclusion criteria were as follows: 1) 3< \text{age}< 13
years; 2) normal renal, hepatic and ECG laboratory
tests; 3) parents’ consent and commitment to follow
all the three test steps; 4) intractable epilepsy; 5)
progressive cerebral disease; 6) lack of severe
malnutrition, disabilities, systemic impairments and
chronic renal, hepatic, endocrine, cardiac and
gastrointestinal complications; 7) parents’
availability.

In this study, we used simple random sampling.
Since the ratio of intractable epileptic children
accounted for 15-20% of the entire cases, 50 cases
were required with a 95% accuracy coefficient and
the maximum of difference in the real parameters of
the study population. Furthermore, in the view of
the fact that this study was the first conducted on
this subject on human, we selected 20 children in
order to prevent the possible complications of using
the Rosa essence.

We recorded all the variables including age, gender,
family history of epilepsy during infancy and
childhood, the type of the first seizure or epileptic
syndrome, Electrocardiogram (ECG), MRI findings
and cerebral CT-scan. The medical therapy was
performed in three stages.

Initially, 500 cc of Rosa damascena essence was
prepared and afterwards, a 10\% concentration was
obtained by medium-chain triglyceride (MCT). The
medicine and placebo were intervened based on the
referral prescription using a double-blinded
approach.

Since it was the first Rosa essence intervention,
each patient was hospitalized at the Department of
Pediatric Neurology in order to receive the placebo
or medicine. First, we recorded the quantity and
duration of each seizure. Afterwards, laboratory
tests were performed including complete blood
count (CBC), renal and hepatic tests, Electroencephalography (EEG) and ECG.

Following that, the patients received the placebo
and the medicine until possible complications
appeared. In addition, CBC, serum glutamate-
pyruvate transaminase (SGPT) and urea were
measured after the patients received the droplet.

One droplet per one kg of body weight was
prescribed for younger children and 2 droplets per 2
kg of body weight for elder an child which was
administered orally in 3 doses within 24 hours.

Pre-medicines continued for the cases and the
droplet, randomly in the form of placebo or
medicine, was administered to the patients. The
patients remained hospitalized during the first days
of the study as to assess possible complications. If
no particular problems were observed, the patient
would be discharged and the treatment would
continue at their residence. The treatment process
could briefly be classified into the following stages.

Preparation of medicine (A or B) in 3 doses for 10
days added to the patients’ pre-medicine;
Discontinuing the droplet and continuing the
previous drugs.

Preparation of the medicine (A or B) with the same
dosage (1 or 2 droplets per each kg of the body
weight administered orally in 3 doses) for 10 days.

At the beginning of each step, the children were
kept hospitalized for 2-3 days in the department and
the number and duration of each seizure would be
recorded in each case. Moreover, the type of the
seizure would be diagnosed observationally.

After collecting the data and the completion of
the treatment, descriptive statistics were used to
describe the observations by sorting the clinical and
diagnostic characteristics and the field agents.

Afterwards, all the collected data were analyzed by
Chi-square and nonparametric statistics of Wilcoxon test, Friedman test and Pearson. Data processing was conducted by SPSS and Minitab software. In order to clarify the statistical findings, tables and diagrams were drawn as well.

RESULTS
Of all the 16 patients, 9 cases were male (56.3%) and 7 were female (43.8%). The mean age of the studied patients was 8.7 years (SD=3.7). The youngest patient was 2 years and the eldest was 13. The mean age of the first seizure incidence was 16.17 months (SD=15.7) with the minimum age of seizure incidence of 3 days and the maximum of 48 months old.
In 12 cases (75%), no history of epileptic seizures was detected while in 3 patients (18.8%), there was an epileptic history report in grade 2 relatives. In addition, 12 patients (75%) had been born via natural vaginal delivery and 4 (25%) were born via Cesarean section. The Apgar scores were in desirable condition in 13 patients (81.3%) during delivery while 3 cases (18.8%) did not score favorably.
The mean head circumference was 33.93 cm (SD=1.43) with the minimum size of 31 cm and the maximum of 36 cm. The head circumference of 12 children (60%) was under the normal range. The average birth weight was 3023.5 gr. (SD=279.1) with the minimum of 2300 gr. and the maximum of 3500 gr. Only 2 cases (12.5%) weighed under 2500 gr.
Neonatal epilepsy was diagnosed in 10 children (62.5%) while 6 cases (37.5%) were not reported to be epileptic. All the children received treatment with antiepileptic medicines 8 of which (50%) received 2 medicines, 6 (37.5%) received 3 and only one patient (6.2%) received 4 medicines.
Moreover, 9 children (56.3%) experienced different types of epilepsy; 7 cases (43.7%) had complex partial seizures, 4 patients (25%) had myoclonic seizures, Lennox Gastaut was observed in 2 subjects (12.5%), myoclonic epilepsy was detected in 2 patients (12.5%) and 2 cases (12.6%) had epilepsy with myoclonic absences.

Furthermore, the etiological assessment of the disease indicated that 2 patients (12.5%) had experienced traumatic brain injury (TBI), 5 (31.2%) had birth asphyxia, one (6.25%) suffered encephalitis, one (6.25%) had septicemia and one (6.25%) was with dysgenesis. As for other patients, no particular causes were reported.
The EEG of all the patients was indicative of epileptic changes while the CT-scan showed abnormality in 11 cases (68.8%). However, the abnormal results of CT-scan were not confirmed in 2 cases who had undergone MRI.
In the study group who used the Rosa essence, the number of repeated seizures reduced while no significant changes were observed in the duration of the fits.
According to the Wilcoxon on test, there was a significant difference between the time of essence prescription and before that regarding the frequency of seizures in different periods (P=0.007). Insert Table No.1.
Moreover, Friedman test was indicative of a statistically significant association between the frequency of seizures before and after the treatment with Rosa oil (P=0.000). The seizures were suppressed in 3 patients (18.7%), they completely receded in 12 patients (75%) and in only one case (6.25%) no significant differences were observed. insert Table No.2.
Furthermore, there were no significant differences between the placebo and the treatment group in terms of the following variables: age, gender, family history of seizures, neonatal history of seizures, Apgar scores, birth weight, head circumference, history of hospitalization, point of the first seizure, seizure syndrome and the type of epilepsy (P> 0.05).
According to the results of Kruskal-Wallis test, there was a significant difference between the number of seizures and the frequency of their type in both the placebo and the treatment group (P< 0.05).
No complications were observed after the treatment with Rosa essence and all the renal, hepatic and cardiac tests were normal.
DISCUSSION

Intractable pharmacoresistant epilepsy is a major medical issue in pediatric neurology. Despite new and developing pharmacologic approaches, the seizures are still present in a large number of epileptic patients and favorable therapies are rarely available. Trending to herbal medicine as an adjuvant therapy requires progressive academic research. In the current study, the effect of Rosa damascena on controlling intractable epilepsy was investigated in pharmacoresistant children of 3-12 years old. Several studies have confirmed the therapeutic impact of Rosa oil on epileptic seizures.

According to the results of the present study, a statistically significant association was observed between the frequency of seizures before and after the treatment with Rosa oil (P=0.000). The seizures were suppressed in 3 cases (18.7%), they completely receded in 12 patients (75%) and in only one case (6.25%), no differences were observed. The main components of Rosa essence are linalool, eugenol, citronellal, damascenone and nerol.

In a double-blinded cross-over clinical trial, Akhoundian et al (2010), evaluated the effects of Thymoquinone on intractable pediatric seizures. They administered Nigella sativa as an adjunctive therapy and observed a reduction in the frequency of seizures by the end of the first period of treatment. Similarly, our findings were indicative of a decrease in the frequency of seizures in the treatment group.

Correspondingly, Ramezani et al (2008) claimed that the essential oil of R. damascena hinders the onset of epileptic seizures and reduces the duration of Tonic-clonic seizures in rats with acute pentyleneetetrazol (PTZ) induced seizures (stage 4). Moreover, this plant could result in the prolongation of latent periods before generalized tonic-clonic seizures in the chronic form of PTZ-induced seizures.

In their study, Wie et al (1997) also reported that the geraniol and eugenol content of R. damascena essential oil possessed antiepileptic properties. However, the actual mechanism of these compounds still remains unknown.

The effects of the essential oil of R. damascena as an adjunct therapy for children with refractory seizures have also been investigated and it has been proven that they result in a significant reduction in the mean frequency of seizures in the patients who receive the essence. Therefore, the essential oil of R. damascena is proven to have numerous beneficial antiepileptic agents in children with refractory seizures.

In another double-blind clinical trial conducted as a pilot study, Afsahrzadeh et al. (2007) investigated the effects of essential Rosa damascena oil in 16 children with refractory epileptic seizures as an adjunct therapy. They reported that the mean frequency of the seizures saw a significant decrease in the patients using the essence in comparison with the control group who were administered placebos. They concluded that the essential oil of Rosa damascena had many beneficial antiepileptic effects on the children with refractory seizures. These findings are consistent with the results of the current study.

In our experiment, we realized that this method could be more effective, accessible, useful and cheaper compared to other alternative therapeutic methods such as ketogenic diet with 40-60% efficiency, vagus nerve stimulation with 30-40% efficiency and intravenous immunoglobulin with 30-50% efficiency.

Table No.1: The frequency of seizures in a period of 10 days, before and after adjuvant therapy by Rosa essence and placebo

<table>
<thead>
<tr>
<th>S.No</th>
<th>The number of Seizure</th>
<th>Treatment period</th>
<th>Before essence</th>
<th>Time of essence</th>
<th>Before placebo</th>
<th>Time of placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1-5</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5-10</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>10-20</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>20<</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Table No.2: Comparison of the quality of seizures in adjuvant therapy periods

<table>
<thead>
<tr>
<th>S.No</th>
<th>Number of seizure</th>
<th>Period</th>
<th>Essence adjuvant therapy</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suppressed</td>
<td>3(18.75%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Decreased</td>
<td>12(75%)</td>
<td>7(43.75%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No change</td>
<td>1(6.25%)</td>
<td>9(56.25%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Total</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION
Rosa damascena essence could significantly decrease the frequency of epileptic seizures. However, it does not affect the duration of the fits. Furthermore, no side effects or complications have been reported on the use of R. damascena as an adjuvant therapy in epileptic pharmacoresistant children.

ACKNOWLEDGEMENT
The authors appreciate the Research Council of Mashhad University of Medical Sciences for the financial support. The authors declare that there is no conflict of interests.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BLBIOGRAPHY

Please cite this article in press as: Farah Ashraf Zadeh, *et al.* The Assessment of Rose Essence (**Rosa Damascena**) in Treating Intractable Pharmacoresistant Epilepsy in Children between 3-12 Years, *Asian Journal of Phytomedicine and Clinical Research*, 3(4), 2015, 117 - 123.